If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2=9.4
We move all terms to the left:
h^2-(9.4)=0
We add all the numbers together, and all the variables
h^2-9.4=0
a = 1; b = 0; c = -9.4;
Δ = b2-4ac
Δ = 02-4·1·(-9.4)
Δ = 37.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{37.6}}{2*1}=\frac{0-\sqrt{37.6}}{2} =-\frac{\sqrt{}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{37.6}}{2*1}=\frac{0+\sqrt{37.6}}{2} =\frac{\sqrt{}}{2} $
| -3(-n)=63 | | 6=-16tˆ2+1250 | | 6.5x+5=3(5x-4)-10x | | 4.3(x-1)-5=3x-2 | | 3.3(2b-1)-7=6b-10 | | (3x+45)=135 | | 2.7x+5(x-1)=-5+12x | | 8-4x=13-3x | | 1.5x-3=13-3x | | 4^3x-3=16^3x+2 | | 4^x-5=2^x+4 | | 16=8(q–6) | | 7z–4z=15 | | a=1/2*177*175 | | d+7d=48 | | Z-16=2z-47 | | A-15=2z-47 | | 2z-61=z | | r^2=324 | | 4.x=10 | | 4.x=104 | | 12+10y=4 | | 4(a-6)=-20 | | 12(x-2)+3x1/2(x+6)=2 | | -5-(3)/(5)x=-3-(2)/(5)x | | 15x+4/5°+6x-8°=180° | | −13=h−19. | | 2(-9h=+2) | | x+0.20×=16.50 | | (x+1)/3=4x-7 | | 3x+(3x-12)=x/4 | | 4(y–7)=–44 |